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Abstract

Video-based facial expression recognition (FER) has received increased atten-

tion as a result of its widespread applications. However, a video often contains

many redundant and irrelevant frames. How to reduce redundancy and com-

plexity of the available information and extract the most relevant information

to facial expression in video sequences is a challenging task. In this paper,

we divide a video into several short clips for processing and propose a clip-

aware emotion-rich feature learning network (CEFLNet) for robust video-based

FER. Our proposed CEFLNet identifies the emotional intensity expressed in

each short clip in a video and obtains clip-aware emotion-rich representations.

Specifically, CEFLNet constructs a clip-based feature encoder (CFE) with two-

cascaded self-attention and local-global relation learning, aiming to encode clip-

based spatio-temporal features from the clips of a video. An emotional intensity

activation network (EIAN) is devised to generate emotional activation maps for

locating the salient emotion clips and obtaining clip-aware emotion-rich repre-

sentations, which are used for expression classification. The effectiveness and

robustness of the proposed CEFLNet are evaluated using four public facial ex-
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pression video datasets, including BU-3DFE, MMI, AFEW, and DFEW. Ex-

tensive experiments demonstrate the improved performance of our proposed

CEFLNet in comparison with the state-of-the-art methods.

Keywords: Video-based FER, emotional activation map, clip-based feature

encoder, clip-aware emotion-rich representation

1. Introduction1

Video-based Facial Expression Recognition (FER) is an important task for2

understanding human emotions and behaviors in videos, which classifies a video3

into several basic emotions such as happiness, anger, disgust, fear, sadness,4

neutral, and surprise [1, 2]. The task faces several challenges such as noise5

introduced by irrelevant frames, the inherently complex information of subtle6

facial expressions in videos, the costly computational overhead introduced by7

heavy models to ensure performance. To address these problems, we introduce8

a clip-aware, emotion-rich feature learning network to obtain an advanced rep-9

resentation of videos for FER.10

Video-based FER methods include static frame-based methods and dynamic11

sequence-based methods [3]. Most of the static frame-based methods process the12

manually defined peak (apex) frames, e.g., local binary patterns (LBPs) [4], local13

phase quantization (LPQ) [5, 6], Gabor wavelets [7], convolutional features [8–14

10], etc. These methods usually neglect the importance of intrinsic relationships15

between visual information of adjacent frames. In addition, it is labor costly to16

obtain peak frames via manual annotation.17

Recently, more studies focus on the dynamic sequence-based method. Rather18

than using static frames, methods such as the Long Short-TermMemory (LSTM) [11,19

12] and C3D network [13], encode the spatio-temporal information by learning20

from appropriate supervision signals (e.g., video category labels). Modeling21

long-term dependencies has been widely employed for video-based expression22

recognition [14, 15]. Although the sequence-based methods have shown an im-23

provement for FER, they still face difficulties in two aspects: they usually require24
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overwhelmingly high computation complexity to model video facial expression25

movements [3, 16], and the presence of many frames irrelevant to expressions26

makes the learned features suboptimal to FER [3].27

To address the above limitations, we propose a clip-aware, emotion-rich fea-28

ture learning network (CEFLNet) that focuses on the most informative frames29

for FER by identifying the emotional intensities of clips in a video. In particular,30

we make the CEFLNet automatically locate the most salient frames in a weakly31

supervised manner without intensity annotations, and thus achieve clip-aware32

emotion-rich representations for video-based FER. The CEFLNet contains two33

main components: clip-based feature encoder (CFE) and weakly supervised34

emotional intensity activation network (EIAN). CFE is used to learn clip-based35

spatio-temporal features based on inter-frame relations in a clip, exploiting emo-36

tional cues between adjacent frames within each clip. EIAN identifies salient37

clips and obtains clip-aware emotion-rich representations by estimating the emo-38

tional activation map.39

The contributions of this paper include the following:40

• we propose a novel CEFLNet for video-based FER to jointly learn the41

emotional intensity of clips of a video and recognize facial expressions in42

a mutually reinforced way. Evaluations on four challenging video-based43

facial expression datasets demonstrate its advantages over the existing44

state-of-the-art methods.45

• the weakly supervised EIAN is proposed to identify the emotional intensity46

of each clip and learn clip-aware emotion-rich representation via generating47

an emotional activation map.48

• the CFE is proposed to adaptively aggregate the frame features to form49

clip-based spatio-temporal features via jointly learning self-attention and50

local-global relation attention, which fully exploits emotional cues between51

adjacent frames within each clip.52

The remainder of this paper is organized as follows: Section 2 introduces53
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related work in video-based FER. Section 3 presents the proposed CEFLNet for54

video-based FER in detail. Section 4 discusses the experimental results on four55

publicly available datasets. Finally, this paper is concluded in Section 5 with a56

summary and future work.57

2. Related work58

Video-based FER Existing video-based FERmethods include static frame-59

based methods and dynamic sequence-based methods. Among the static frame-60

based methods, we have frame aggregation methods and peak frame extraction61

methods. The frame aggregation methods strategically combine frame-level62

features learned from static-based FER networks [16, 17] to construct video-63

level features for FER. The peak frame extraction methods focus on the peak64

frame of a video and ignore the emotional information from other periods of65

the video [18, 19]. Meng et.al [16] proposed the frame attention networks to66

adaptively aggregate frame features in an end-to-end framework and achieved67

accuracy of 51.18% on the AFEW 8.0 dataset [20]. To alleviate the influence of68

redundant and irrelevant frames, Zhao et al. [18] proposed a peak-piloted deep69

network (PPDN) for intensity-invariant expression recognition. This method70

takes a pair of peak and non-peak expression images with the same expres-71

sion and subject as input and minimizes the distance between the images with72

the same expression. Yu et al. [19] proposed a deeper cascaded peak-piloted73

network (DCPN) to enhance the ability of expression representation of the net-74

work. These frame-based methods have achieved good results in well-selected75

peak frames, however, manual selection of peak frames increases labor costs76

while ignoring other emotional cues existing in adjacent frames.77

The dynamic sequence-based method takes the entire video sequence as in-78

put and uses the texture information and temporal dependence in the frame79

sequence to recognize facial expressions [3, 9, 11, 13, 21]. Vielzeuf et al. [11]80

used pre-trained VGG-Face to extract spatial features, then utilized an LSTM81

layer to encode temporal dependencies in the sequence. Kim et al. [13] propose82
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a new spatio-temporal representation learning for FER by integrating C3D and83

LSTM networks, which is robust to expression intensity variation. In [21], a84

temporal geometric feature was proposed to improve the discriminative capacity85

of the learned spatio-temporal appearance features. Although these dynamic-86

based networks capture spatio-temporal features for FER, they still challenge in87

describing expression movements in untrimmed videos and require large model88

capacities to model facial expression changes in videos.89

Attention model Visual attention based networks have been proposed90

to localize significant regions for many computer vision tasks, including fine-91

grained recognition [22, 23], image captioning [24], person re-identification [25],92

and object detection [26, 27]. Some methods are learned by the aggregating93

scheme from the internal hidden representations in CNN [28]. Other methods94

focus on detecting local regions according to supervised bounding box annota-95

tion, e.g., region proposal network (RPN) [26]. Zheng et al. [28] adopted channel96

grouping sub-network to cluster different convolutional feature maps into groups97

according to peak responses of maps. Xu et al. [29] proposed an attention shift98

based on multiple blur levels to avoid occlusions for facial gender classification.99

SE-Net [23] proposed the Squeeze-and-Excitation (SE) block that re-calibrates100

channel-wise feature responses by explicitly modeling the inter-dependency be-101

tween channels. The SE block results in considerable performance improvement102

for image classification with minor additional computational costs. Meng et103

al. [16] proposed a frame attention network (FAN) for selecting frames from104

a video to form a dicriminative video-level representation. Although attention105

has been successfully employed in many computer vision tasks, it is difficult to106

directly use it for capturing beneficial expression movements in videos due to107

the vastly present irrelevant frames and the limited motion variation.108
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3. Clip-aware emotion-rich feature learning network109

3.1. Network Architecture110

The architecture of our proposed CEFLNet is shown in Figure 1(a). CE-111

FLNet consists of CFE and EIAN. Given a video sequence V with facial ex-112

pression label YV = {ye}, V is divided into several video clips denoted as113

V = {C1, C2, ..., Cn}, where Ck is the k− th clip. Our learning problem consists114

of two parts: (1) CFE adaptively encodes frame feature vectors extracted from115

a clip Ci to form discriminative clip-based features Ri, via jointly self-attention116

learning and local-global relation learning. (2) After concatenating the clip117

features, EIAN further focuses on clip-aware emotion-rich representations by118

generating emotional activation maps in a weakly supervised learning manner,119

without any peak frames or clip annotation.120

Figure 1: The overall architecture of our CEFLNet for video-based FER and the structure of

CFE.

3.2. CFE for clip-level representation121

The clip-based feature encoder contains two cascaded attention learning122

modules: self-attention learning (SAL) and local-global relation learning (LRL).123
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Figure 1(b) shows the detailed structure of the CFE. In practice, SAL models124

frame-level relation to obtain the self-attention in each clip, and LRL improves125

the clip-level representation by learning local-global relation attention. Through126

the two-cascaded attention learning, the CFE exploits the emotional cues of127

spatio-temporal information in each clip.128

Self-attention learning Self-attention learning models the frame-level re-129

lation to obtain spatio-temporal features for clips. Fig 2 shows the detailed130

structure of this component. Let fk,i denote the feature vector of the k-th131

frame in the i-th clip. Note that we use the deep convolutional neural net-132

work (DCNN) like a pre-trained ResNet-18 to extract features and consider the133

global average pooling output of the employed DCNN as fk,i. Ii denotes the134

matrix stacking all the features fk,i of the i-th clip. Given that a clip contains135

K frames and each fk,i has d dimensions, Ii has a size of K × d. Since we136

only consider frames of a single clip at this stage, we drop i from the nota-137

tion for simplicity, i.e., I = Ii, fk = fk,i. Following self-attention learning, we138

transform I into three different tensors, i.e., a query tensor IQ = WQI, a key139

tensor IK = WKI, and a value tensor IV = WV I, where the query/key/value140

tensor is computed for each visual emotion from the clip feature I. We apply141

self-attention and obtain feature matrix f ′ that captures visual change patterns142

of facial expressions:143

f ′ = softmax(
IQ ITK√

d
)IV . (1)

Self-attention learning encodes the spatio-temporal information within a clip.144

However, it only considers frame-level relations without taking into account the145

global relation between frames and the clip. To address this limitation, we146

introduce the local-global relation learning to consider the global information147

of a clip.148

Local-global relation learning Fig 1(b) shows the structure of the Local-149

global relation learning. We summarize f ′ into a single clip representation f̂ ′
150

through the pooling operation and compute the local-global relation attention151
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Figure 2: The structure of the self-attention component. MatMul stands for dot product and

Scale stands for scale operation.

via a sample concatenation and a fully-connected layer (FC) as follows:152

wk = σ([f̂ ′ : f ′
k]

T q0) (2)

where q0 is the parameter of the FC. f ′
k is the feature of the kth frame and153

T is the transpose operation. σ is the sigmoid function. Operator : denotes154

concatenation that integrates frame features into the clip feature. wk implies155

the frames that contain more relevant emotion information in a clip or not.156

We re-scale and aggregate features of each frame to form the new clip-based157

representation:158

Ri = [
Σkwkf

′
k

Σkwk
]q1 (3)

where q1 is the parameter of the FC. The local-global relation attention high-159

lights the more useful visual cues for expression motion in a clip and provides160

key clip-level features for the following EIAN.161

3.3. Weakly supervised EIAN for clip-aware emotion-rich video representation162

EIAN identifies the emotional intensity scores of clips and generates emo-163

tional activation maps via class activation emotion sequences in a weakly su-164

pervised manner. The detailed process for generating the emotional activation165

map and locating the salient emotion-rich clip is shown in Figure 3.166
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Figure 3: The detailed process for locating the salient emotion-rich clip and generating an

emotional activation map. WT is a learnable parameter matrix of one-dimensional convolu-

tion. Note that darker colors indicate better attention weights, i.e. the current frame contains

more emotional information.

The clip-level features are concatenated into a video-level representation V f
167

V f = H(R1, R2, ..., Rn), (4)

where H(•) denotes an aggregate operation, n is the number of clips in a video.168

Inspired by Class Activation Mapping(CAM) [30], we introduce a class activa-169

tion emotion sequence to generate the emotional activation map by learning the170

temporal attention of clips. As shown in Figure 3, the video-level representation171

V f is fed to one-dimensional convolutional layers to learn temporal attention.172

For the attention channels, the results of performing a full-connected layer are173

WTV f . Thus, for each video-level expression class yc, a softmax operation is174

adopted to identify the emotional intensity scores of clips. The emotional scores175

Ayc is computed as follows:176

Ayc = Softmax(WTV f ), (5)

where WT is a learnable parameter matrix of one-dimensional convolution.177

The emotional scores reflect how much emotional information each clip con-178

tains in a video. Unlike the CAM-based bounding box proposals [30], Ayc is179

a one-dimensional vector of the position of the emotion-rich clips. Hence, we180

compute the position of the selected emotion-rich clip Pe as follows:181

Pe = argmax(Ayc), (6)
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Mc is the emotional activation map of the expression class yc,182

Mc = Ayc · V f , (7)

where · represents dot product. Mc gives the importance of the activation at a183

video temporal sequence leading to the classification of facial expression. The184

emotion-rich representation V̂ f of a video is given by:185

V̂ f = maxpool(Mc). (8)

To classify the emotion-rich representation into facial expression categories,186

we apply softmax and a fully-connected layer to calculate the probability of187

facial expressions:188

p(ŶV ) = softmax(V̂ fq2) (9)
189

softmax(Z)j =
eZj∑C
c=1 e

Zc

, for j = 1, ..., C (10)

where p(ŶV ) is the expression category score and q2 is the parameter vector of190

the fully-connected layer, Z is the output of the FC layer, C is the number of191

expression category, and Softmax(Z)j denotes the probability that the video192

belongs to the jth expression category.193

3.4. Objective function194

The objective of CEFLNet has two parts: the CFE guarantees high-quality195

emotional representations of clips, and EIAN focuses on the emotion-rich fea-196

tures relevant to facial expressions via weakly supervised learning. In our study,197

only a video-level FER classification loss Lclass is used to optimize the two ob-198

jectives of the entire network. Our FER classification loss Lclass is as follows:199

Lclass=−
∑
V

YV log[p(ŶV)]+(1− YV)log[1−p(ŶV)], (11)

where YV denotes the facial expression label for each video, V indexes a training200

video, and p(ŶV) denotes the probabilities of facial expressions predicted by the201

CEFLNet.202
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4. Experimental Results and Discussion203

4.1. Datasets and Implementation Details204

To evaluate our method, four video-based face expression datasets were used205

in our experiments, including BU-3DFE dataset [31], MMI dataset [32], AFEW206

8.0 dataset [20], and DFEW dataset [33].207

BU-3DFE [31]: The 3D facial expressions are captured at a video rate208

(25 frames per second). Six emotion labels are included, i.e., anger, disgust,209

happiness, fear, sadness, and surprise. Each expression sequence contains about210

100 frames. BU-3DFE contains 606 3D facial expression sequences captured211

from 101 subjects, with a total of approximately 60,600 frames. In this study,212

a 10-fold validation was conducted.213

MMI [32]: A total of 205 deliberate expression sequences with frontal faces214

were collected from 30 subjects. The expression sequences were recorded at215

a temporal resolution of 24 fps. Each expression sequence of the dataset was216

labeled with one of the six basic expression classes (i.e., anger, disgust, fear,217

happiness, sadness, and surprise). The expression sequences were collected such218

that, the first frame in the sequence was the onset frame and the last frame was219

the offset frame. In this study, a 10-fold validation was conducted.220

AFEW [20]: The AFEW has served as an evaluation platform for the an-221

nual EmotiW since 2013. Seven emotion labels are included in AFEW, i.e.,222

anger, disgust, fear, happiness, sadness, surprise, and neutral. AFEW contains223

videos collected from different movies and TV serials with spontaneous expres-224

sions, various head poses, occlusions, and illuminations. AFEW is divided into225

three splits: Train (738 videos), Val (352 videos), and Test (653 videos). Be-226

cause we do not have test labels for evaluation, we follow the setting of other227

compared methods and only used the Training/Val set for experiments.228

DFEW [33]: The DFEW is a large-scale unconstrained dynamic facial229

expression database, containing 16,372 video clips extracted from over 1,500230

different movies. It contains 12,059 single-label video clips and also includes231

seven emotion labels, i.e., anger, disgust, fear, happiness, sadness, surprise, and232
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neutral. DFEW dataset provides five data division methods. Hence, a 5-fold233

validation was used. Examples of these datasets are shown in Fig 4.234

Figure 4: Some samples from these four datasets. (a) BU3D, (b) MMI, (c) AFEW, (d) DFEW.

The most emotional frames are highlighted with red boxes.

We kept each video to 105 frames via interpolation and clipping. The face235

regions are detected using Retinaface [34] and the size of each face is resized236

to 224×224. A randomly selected frame within the first 30 frames was used as237

the starting frame and the following 75 consecutive frames were extracted. We238

split the 75 frames into seven sub-Videos, each of which had 15 frames, with239

five frames overlapping between each sub-video. To reduce the computation240

cost, five frames were randomly sampled from each sub-video to form a new241

expression clip. We conducted a 10-fold validation on BU-3DFE and MMI242

datasets, a 5-fold validation on the DFEW dataset, and used the training and243

validation sets for the experiments on the AFEW dataset.244

Our method is implemented using Pytorch. The training parameters include245

initial learning rate (0.0001), cosine annealing schedule to adjust the learning246

rate, mini-batch size (8), and warm-up. The experiments were conducted on a247

PC with Intel(R) Xeon(R) Gold 6240C CPU at 2.60GHz and 128GB memory,248

and NVIDIA GeForce RTX 3090 GPU. The key parameters used in training the249
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network are given in Table 1.

Table 1: The Key parameters in training the network.

Parameters Settings

Optimizer ADAM

Init learning rate 0.0001

weight decay 0.0001

Maximum number of iterations 160

Mini-batch size 8

Epoch 120

The number of clips per video 7

The number of frames per clip 5

250

4.2. Performance Analysis and Comparison Study251

Figure 5(a) shows the confusion matrix of our method using the BU-3DFE252

dataset. Among the six expressions, the highest accuracy is 100% (Surprise),253

while the lowest accuracy is 70.0% (Fear), which has the least amount of facial254

expression and is difficult to distinguish from the other expressions. The average255

accuracy of facial expression recognition is 85.33% with a standard deviation256

of 3.29 for the BU-3DFE dataset. Figure 5(b) depicts the confusion matrix257

of our method for processing the MMI dataset. Among the four datasets, our258

method achieved the best accuracy for predicting facial expressions from the259

MMI dataset. The proposed method achieved an average accuracy of 91% with260

a standard deviation of 4.36. For four out of six expressions, including Fear,261

Happiness, Sadness, and Surprise, we achieved 100% accuracy. There exist a262

slight confusion between Anger and Disgust expressions and the average accu-263

racy of these two expressions is 83%.264

Figure 5(c) shows the confusion matrix from the AFEW dataset. AFEW265

is one of the most challenging datasets and great confusion exists among ex-266

pressions including Disgust, Fear, Sadness, and Surprise. The average accuracy267

of our method is at 53.98% with a standard deviation of 0.4 and the highest268
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Figure 5: The confusion matrix of our method using the four datasets.

accuracy is 87% for Neutral. The accuracy of Happiness and Anger are 83%269

and 82%, respectively. Disgust and Fear are the two most confusing expressions270

in this dataset [11, 35]. Figure 5(d) shows the confusion matrix from the large-271

scale DFEW dataset. The average accuracy of our method is 65.35% with a272

standard deviation of 1.13. The highest accuracy is 84% of Happiness followed273

by Anger and Sadness, the accuracy of which is at 70% and 68%, respectively.274

Similar to the AEFW dataset, the most confusing expressions include Disgust275

and Fear. This could be attributed to the extreme imbalance of the category in276

the DFEW (only occupies 1.22% in the DFEW dataset) [36].277
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Comparison study (BU-3DFE): We compare our CEFLNet with the state278

of the arts, including FERAtt+Rep+Cls [37], FAN [16], DeRL [8], C3D [38],279

ICNP [39], and C3D-LSTM [40]. The dataset used in our comparison study280

is BU-3DFE. Table 2 report the average accuracy and the feature settings of281

the methods. The best and second-best results are highlighted with bold font282

and underscore, respectively. The accuracy of CEFLNet is better than both283

sequence-based and frame-based methods. Compared to the best sequence-284

based result, the proposed CEFLNet improved the accuracy by 2.13%. This285

demonstrates that our method discovers the more informative emotion-related286

cues by modeling the emotion transition relation in videos.

Table 2: FER accuracy on the BU-3DFE dataset. The best result is highlighted in bold.

Methods Feature setting Accuracy(%)

FERAtt+Rep+Cls [37] frame-based 82.11

FAN [16] frame-based 84.17

DeRL [8] peak frame-based 84.17

C3D [38] sequence-based 75.83

C3D-LSTM [40] sequence-based 79.17

ICNP [39] sequence-based 83.20

CEFLNet clip-based 85.33

287

Comparison study (MMI): In comparison with the state-of-the-art video-288

based FER methods, Table 3 lists the average accuracy on MMI dataset using289

frame-based methods (i.e., AUDN [41], DeRL [8], WMDCNN [42] and CER [7],290

sequence-based methods (i.e., LSTM [13], Deep generative-contrastive networks291

(DGCN) [9], LPQ-TOP+SRC [6], SAANet [43], and WMCNN-LSTM [42]) and292

our CEFLNet. The proposed method achieved an average accuracy of 91%293

with a standard deviation of 4.36, which outperformed existing state-of-the-art294

FER methods. Compared to the second best method, WMCNN-LSTM [42],295

the CEFLNet improved the accuracy by 3.9%.296

Comparison study (AFEW): Table 4 compares the average accuracy of FER297

using AFEW dataset. For a fair comparison, we only list these results obtained298
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Table 3: FER accuracy on the MMI dataset. The best result is highlighted in bold.

Methods Feature setting Accuracy(%)

DeRL [8] frame-based 73.23

WMDCNN [42] frame-based 78.2

CER [7] peak frame-based 70.12

AUDN [41] peak frame-based 75.85

LPQ-TOP+SRC [6] sequence-based 64.11

LSTM [13] sequence-based 78.61

DGCN [9] sequence-based 81.53

WMCNN-LSTM [42] sequence-based 87.10

SAANet [43] sequence-based 87.06

CEFLNet clip-based 91.00

by the best single models in previous works. Both [44] and [45] input two299

LBP maps and a gray image for CNN models. Deeply supervised networks300

are used in [45] and [15], which add supervision on intermediate layers. For301

clip-based methods, [35] uses DenseNet-161 and pre-trains it on both large-302

scale face datasets and their own Situ emotion video dataset. Additionally, [35]303

applies complicated post-processing which extracts frame features and computes304

their mean vector, max-pooling vector, and standard deviation vector. These305

vectors are then concatenated and finally fed into an SVM classifier. Overall,306

our CEFLNet improves the baseline (about 2.45%) and achieves performance307

comparable to that of the best previous single model. It demonstrates that our308

method achieves the best performance with great robustness, meanwhile, has309

obvious advantages over other algorithms on the in-the-wild expression dataset.310

Comparison study (DFEW): The results in Table 5 show that our method311

is still far superior to other algorithms. More detailed comparison results can312

be shown in Table 5. Compared to the state-of-the-art methods reported in313

[33], the FER accuracy of our CEFLNet achieved significant improvement (over314

8.84%) on the challenging large-scale dataset.315
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Table 4: FER accuracy on AFEW 8.0 dataset. The highest result is highlighted in bold.

Methods Feature setting Accuracy(%)

HoloNet [44] frame-based 44.57

DSN-HoloNet [45] frame-based 46.47

DSN-VGGFace [15] frame-based 48.04

FAN [16] frame-based 51.18

C3D [38] sequence-based 30.11

VGG16+TP+SA [46] sequence-based 49.00

Emotion-BEEU [47] sequence-based 52.49

DenseNet-161 [35] clip-based 51.44

CEFLNet clip-based 53.98

Table 5: FER accuracy on DFEW dataset. The highest result is highlighted in bold.

Methods Feature setting Accuracy(%)

C3D,EC-STFL [33] sequence-based 55.50

R3D18,EC-STFL [33] sequence-based 56.19

VGG11+LSTM,EC-STFL [33] sequence-based 56.25

P3D,EC-STFL [33] sequence-based 56.48

3D ResNet-18,EC-STFL [33] sequence-based 56.51

CEFLNet clip-based 65.35

4.3. Ablation Study and Analysis316

4.3.1. Analysis of Network Components317

To analyze the contribution to the learning capability by the components of318

CEFLNet, Table 6 presents the results of our ablation study that looks into319

the impact of gradual addition of the self-attention learning, local-global relation320

learning, and EIAN training components to the baseline framework (ResNet-321

18). The training and testing datasets used in this study are BU-3DFE.322

ResNet-18 and CNN-LSTM achieved an average accuracy of 62.77% and323

79.17%, respectively. In our method, we used SAL to learn frame relation and324

achieved average recognition accuracy of 84.17%. By adding LRL to the net-325

work, the performance was improved by 0.5%, which shows that the local-global326
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Table 6: Ablation study of the proposed CEFLNet. The best results are in bold.

Methods SAL LRL EIAN Acc(%)

ResNet-18 62.77

CNN-LSTM 79.17

+ SAL ✓ 84.17

+ LRL ✓ ✓ 84.67

+ EIAN ✓ ✓ ✓ 85.33

relation learning module can better learn the potential relationship between327

each frame and clip. Note that the integration of EIAN improved the FER328

accuracy by 0.66%. This demonstrates that the EIAN module learns the emo-329

tional intensity from clip-based representations and obtains more distinguishable330

emotion-rich video features.331

4.3.2. Emotion-rich Clips332

Figure 6 shows the emotional activation maps and clip selection on the four333

datasets. The orange boxes depict the select emotion-rich clips in videos. It can334

be seen that the emotion-rich clips have the greatest expression intensity than335

other clips, which implies that EIAN identifies the salient emotion-rich clip and336

performs emotional activation according to the emotional intensity of each clip.337

In addition, we evaluated the accuracy of emotion-rich clip selection on the338

four datasets, as shown in Table 7. The proposed MIAN achieved an accuracy of339

67.57% on the MMI dataset and achieved an accuracy of 45% on the challenging340

AFEW dataset. This demonstrates that the EIAN method effectively locates341

the emotion-rich clip in the untrimmed videos.342

Table 7: The accuracy of emotion-rich clip locating

Dataset BU3D MMI AFEW DFEW

Accuracy(%) 55.83 67.57 45.00 47.65

We visualized the expression features with different settings in a 2D fea-343

ture space by using the t-SNE on the four datasets. The visualizations include344
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Figure 6: The emotional activation maps and the located clips (highlighted with orange boxes).

Darker colors indicate greater attention weights, i.e., more emotional information.

the following four cases: clip-aware emotion-rich representations by the CE-345

FLNet (see Figure 7(a)), video attention features extracted by FAN [16] (see346
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Figure 7: The t-SNE feature visualization of different representations in 2D space. (a) Clip-

aware emotion-rich representations by CEFLNet, (b) video attention features by FAN, (c)

sequence-based video features by LSTM, (d) frame-based features by ResNet18.

Figure 7(b)), sequence-based video features extracted by LSTM [48] (see Fig-347

ure 7(c)), frame-based features extracted by ResNet-18[49] (see Figure 7(d)).348

Obviously, compared to the features shown in Figure 7(b), Figure 7(c) and349

Figure 7(d), the clip-aware emotion-rich features proposed in this study can350

significantly be separated according to facial expression categories. It is evi-351
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dent that the proposed CEFLNet can learn more expressive and discriminative352

representations for video-based FER on the four datasets.353

We studied the impact of the number of clips per video and the number354

of frames per clip on the accuracy of FER. As shown in Figure 8(a), all four355

datasets achieved the highest accuracies when the number of clips is 7, and356

achieved the lowest accuracies when the number of clips is 1. Results show that357

too many or too few clips are detrimental to the performance of facial expression358

recognition. As shown in Figure 8(b), the highest accuracy is achieved when359

we set the number of frames of each clip to 5. When this number is less than360

5, the accuracy drops. The performance drop might be a result of emotional361

information lost. When the number of frames is 15, redundant expressionless362

frames cause expression inconsistency and hence reduce recognition accuracy.363

In our experiments, we keep the number of clips of each video to 7 and the364

number of frames of each clip to 5.365

Figure 8: The accuracy of the number of frames per clip and the number of clips per video

for FER on four datasets. (a) The effect of the number of expression clips, (b) the effect of

the number of frames.

4.4. Computational Complexity366

Table 8 reports model parameters and computational cost of the three spatio-367

temporal learning methods in processing the BU-3DFE dataset. We use Multi-368
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ply–Accumulate Operations(MACs) 1 to measure the computational cost. Our369

CEFLNet resulted in the best performance (FER accuracy of 85.33%) with the370

least computational cost (63.8G) and parameters (12.83M) among the compared371

methods, which demonstrates that the proposed method exhibits improved ac-372

curacy and efficiency.373

Table 8: Comparison of model complexity and efficiency.

Method Backbone Params(M) MACs(G) Acc(%)

C3D C3D 79.99 326.41 75.83

C3D-LSTM C3D 110.24 282.26 79.17

CEFLNet ResNet-18 12.83 63.80 85.33

Table 9 lists the average accuracy and the computation cost with respect374

to the number of frames. Clearly, when less number of frames are used, the375

computational cost is lower. However, the best accuracy is achieved when the376

number of frames is 5. Hence, to balance speed and accuracy, a five-frame per377

clip is a proper choice.

Table 9: The effect of the number of frames on the computation cost and classification accu-

racy.

# of frames MACs(G) Acc(%)

2 25.52 85

5 63.80 85.33

10 127.59 84.17

15 191.39 84.17

378

5. Conclusion and Future Work379

In this paper, we propose an effectively clip-aware emotion-rich feature learn-380

ing network to jointly identify the emotion-rich clips and recognize dynamic381

1https://github.com/sovrasov/flops-counter.pytorch
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facial expressions in a video. CEFLNet decomposes a video into several small382

video clips and extracts the clip-level spatio-temporal features via two-cascaded383

self-attention and local-global relation learning within each video clip. Our384

method generates an emotional activation map that is used to identify salient385

emotion clips for clip-aware emotion-rich representations. Our proposed method386

requires no clip-wise or frame-wise annotations for training the model and can387

be trained in an end-to-end manner.388

Experiments were conducted using four public video datasets, namely the389

BU-3DFE, MMI, AFEW, and DFEW. Due to suppressing the redundancy in-390

formation from expression-irrelevant clips, the proposed method was found to391

achieve a much-improved performance for video-based FER, with great robust-392

ness and efficiency; the highest accuracy for each of these datasets was 85.33%,393

91%, 53.98%, and 65.35%. In our future work, we plan to study self-supervised394

learning to model the extraction of key information from complex facial video395

sequences with multiple expressions.396
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